

Grade 9 Mathematics Worksheet

Number Patterns

Questions:

1. Consider the array of dots in the following diagram:

These numbers are known as the triangular numbers.

a) For this sequence of numbers, complete the table below:

Picture number	1	2	3	4	5	6	9
Number of dots	1	3	6				

- b) Show clearly how you got to T₉ in this sequence.
- c) The general rule for the triangular number sequence 1; 3; 6; ... is $T_n = \frac{n(n+1)}{2}$. If the sequence started at 3 and continued as normal, show how you will adjust this rule to accommodate this change?
- d) Use the rule $T_n = \frac{n(n+1)}{2}$ to prove that two consecutive triangular numbers always add up to a square number.

Grade 9 Mathematics Worksheet

Solution:

1. a)

Picture number	1	2	3	4	5	6	9
Number of dots	1	3	6	10	15	21	28

b)
$$T_2 = T_1 + 2$$
; $T_3 = T_2 + 3$; $T_4 = T_3 + 4$; $T_5 = T_4 + 5$; $T_6 = T_5 + 6$; $T_7 = T_6 + 7$; so $T_9 = T_8 + 9$ or in general the recursive pattern is $T_{n+1} = T_n + (n+1)$.

c) This will be a horizontal translation of 1 unit to the left for the sequence. It thus becomes:

Picture number	1	2	3
Number of dots	3	6	10

d)
$$T_n = \frac{(n+1)(n+1+1)}{2} = \frac{(n+1)(n+2)}{2}$$
.

For two consecutive numbers that are triangular:

$$T_n = \frac{n(n+1)}{2} \text{ and } T_{n+1} = \frac{(n+1)(n+2)}{2}.$$

So:

$$T_n + T_{n+1} = \frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2}$$

$$= \frac{(n+1)(n+n+2)}{2}$$

$$= \frac{(n+1)(2n+2)}{2}$$

$$= \frac{2(n+1)(n+1)}{2}$$

$$= (n+1)^2$$

This is clearly a square number.

Learners learn about sequences by looking at them recursively – that is what happens to the previous term to obtain the next term.

Grade 9 Mathematics Worksheet

The translation is one unit to the left for the sequence, so that term 1 is now 3. Thus we need to change the n in the sequence to n+1 to accommodate this translation. Another way to look at this is realise that n is still one and that what we change in the generalised number must have an output of 3.