Grade 9 Mathematics Worksheet

Number Patterns

Questions:

1. Consider the array of dots in the following diagram:

These numbers are known as the triangular numbers.
a) For this sequence of numbers, complete the table below:

Picture number	1	2	3	4	5	6	9
Number of dots	1	3	6				

b) Show clearly how you got to T_{9} in this sequence.
c) The general rule for the triangular number sequence $1 ; 3 ; 6 ; \ldots$ is $T_{n}=\frac{n(n+1)}{2}$. If the sequence started at 3 and continued as normal, show how you will adjust this rule to accommodate this change?
d) Use the rule $T_{n}=\frac{n(n+1)}{2}$ to prove that two consecutive triangular numbers always add up to a square number.

Grade 9 Mathematics Worksheet

Solution:

1. a)

Picture number	1	2	3	4	5	6	9
Number of dots	1	3	6	10	15	21	28

b) $T_{2}=T_{1}+2$;
$\mathrm{T}_{3}=\mathrm{T}_{2}+3$;
$\mathrm{T}_{4}=\mathrm{T}_{3}+4$;
$\mathrm{T}_{5}=\mathrm{T}_{4}+5$;
$\mathrm{T}_{6}=\mathrm{T}_{5}+6$;
$\mathrm{T}_{7}=\mathrm{T}_{6}+7$; so $\mathrm{T}_{9}=\mathrm{T}_{8}+9$ or in general the recursive pattern is $T_{n+1}=T_{n}+(n+1)$.
c) This will be a horizontal translation of 1 unit to the left for the sequence. It thus becomes:

Picture number	1	2	3
Number of dots	3	6	10

d) $\quad T_{n}=\frac{(n+1)(n+1+1)}{2}=\frac{(n+1)(n+2)}{2}$.

For two consecutive numbers that are triangular:
$T_{n}=\frac{n(n+1)}{2}$ and $T_{n+1}=\frac{(n+1)(n+2)}{2}$.
So:

$$
\begin{aligned}
T_{n}+T_{n+1} & =\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2} \\
& =\frac{(n+1)(n+n+2)}{2} \\
& =\frac{(n+1)(2 n+2)}{2} \\
& =\frac{2(n+1)(n+1)}{2} \\
& =(n+1)^{2}
\end{aligned}
$$

This is clearly a square number.

Learners learn about sequences by looking at them recursively - that is what happens to the previous term to obtain the next term.

Grade 9 Mathematics Worksheet

The translation is one unit to the left for the sequence, so that term 1 is now 3 . Thus we need to change the n in the sequence to $n+1$ to accommodate this translation. Another way to look at this is realise that n is still one and that what we change in the generalised number must have an output of 3 .

