Grade 7 Natural Science Worksheet

Assessment Task: Physical Sciences: measurements, mathematics

Measurement of area

Part One: Calculate the tiles needed for your classroom floor

You decide to tile your classroom floor. The tiles you want to use are $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ in size. How many tiles will you need to buy? Show your working out.

Part Two: A caterpillar eats a leaf

Imagine that you have a pot plant growing on the windowsill. One morning, you notice that a caterpillar is busy eating the leaves of this pot plant. After two hours, you come back and see the caterpillar again - and you are quite sure that it has eaten a whole leaf while you were gone! You decide to investigate just how quickly this caterpillar is eating. You take a leaf off the plant and draw a diagram to show how big the leaf is on square paper with squares of $1 \mathrm{~cm} \times 1 \mathrm{~cm}$. You then place the caterpillar on this leaf and leave it for 30 minutes. You redraw the leaf after 10 minutes.

Grade 7 Natural Science Worksheet

1. What is the area of the leaf before being eaten? (to the nearest whole cm^{2})
2. What is the area left after 10 minutes?
3. How many cm^{2} have been eaten in 10 minutes? [2]
4. What fraction or percentage of the leaf has been eaten?
5. How long would it take the caterpillar to eat the whole leaf?
[2]
6. How many leaves could the caterpillar eat in 2 hours?
7. You give the caterpillar the amount of leaves you calculated it would eat in 2 hours. It eats less than that amount in 2 hours. Can you explain why?

Grade 7 Natural Science Worksheet

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \begin{array}{l}\text { Possible } \\ \text { marks }\end{array} & \text { Solution } \\ \hline \mathbf{1} & 15 & \begin{array}{l}\text { 1. Calculate the area of floor space that needs tiling. } \checkmark \checkmark \checkmark \checkmark \text { Divide the } \\ \text { area into regular squares or rectangles with masking tape and measure } \\ \text { these areas', length and breadth and then multiply them together to give } \\ \text { you the area for each section. } \checkmark \checkmark \checkmark \checkmark \text { Some areas, e.g. the curves around } \\ \text { objects, may be difficult to measure, but work in small sections, and } \\ \text { estimate. Add all your sections together. } \checkmark \checkmark \\ \text { 2. If each tile is } 30 \mathrm{~cm} \times 30 \mathrm{~cm} \text {, then each tile has an area of } 900 \mathrm{~cm}^{2} . \\ \text { 3. Divide the total floor area by 900. Your answer will be the number of } \\ \text { tiles you need to buy. } \checkmark \checkmark \checkmark \\ \text { With a job such as tiling, where tiles could break as you cut them, and } \\ \text { other nasty little surprises as you work, it would be wise to buy a couple } \\ \text { more than the number that you work out - just in case! }\end{array} \\ \hline \mathbf{2} & 20 & \begin{array}{l}\text { 1. About } 64 \mathrm{~cm}^{2} \text { [2] remember that these are estimates and depend on } \\ \text { the way the learners counted the squares. }\end{array} \\ \text { 2. About 47 } \mathrm{cm}^{2} \text { [2] } \\ \text { 3. About } \mathrm{cm}^{2} \text { [2] } \\ \text { 4. 26\% [2] depending on the original figures. } \\ \text { 5. About 40 minutes [2] } \\ \text { 6. 3 leaves [2] } \\ \text { 7. The caterpillar could be reaching capacity and need to rest or slough } \\ \text { off its old skin. The time taken for the caterpillar to move from leaf to leaf } \\ \text { could also account for a slower consumption time. [8] }\end{array}\right\}$

